Enamine Character of a 2,3- $\boldsymbol{\eta}^{\mathbf{2}}$-Coordinated Pyrrole

W. H. Myers, ${ }^{\dagger}$ M. Sabat, and W. D. Harman*
Department of Chemistry, University of Virginia Charlottesville, Virginia 22901
Received April 8, 1991

The emergence of several general synthetic routes to η^{2}-coordinate complexes of aromatic molecules ${ }^{1-4}$ provides an opportunity to explore how such coordination alters the reactivity of the substrate. Although such complexes have now been reported for arenes, ${ }^{18,2}$ pyridines, ${ }^{1 \mathrm{~b}, 3}$ pyrroles, ${ }^{1 \mathrm{c}}$ furans, ${ }^{1 \mathrm{lc}}$ thiophenes, ${ }^{1 \mathrm{lc}}$ and selenophenes, ${ }^{4}$ little is known about reactivity of the η^{2}-bound aromatic ligand. We report the first crystallographic and structural evidence that $2,3-\eta^{2}$-coordination of a pyrrole transforms the ligand into an enamine.

Following a procedure similar to that earlier reported for pyrrole, ${ }^{5}$ the complex $\left[\mathrm{Os}\left(\mathrm{NH}_{3}\right)_{5}\left(\left(2,3-\eta^{2}\right)-2,5\right.\right.$-dimethylpyrrole)](OTf) ${ }_{2}(1)$ was synthesized from the free ligand and an $\mathrm{Os}\left(\right.$ III) precursor. ${ }^{1} \mathrm{H}$ NMR data indicate that, at $20^{\circ} \mathrm{C}, 1$ is fluxional, showing single, broad peaks for the methyl and methine protons. ${ }^{6}$ As a consequence of the methyl substituents, 1 has a racemization (tautomerization) rate several orders of magnitude faster than that of the parent pyrrole complex, whose NMR spectrum is chemical shift resolved at this temperature. ${ }^{\text {Ic }}$
Crystal Structure. Air-sensitive crystals of 1a were obtained from a DME solution. The molecular structure ${ }^{7}$ of the cation appears in Figure 1. As postulated for the parent complex, ${ }^{\text {lc }}$ the 2,5-dimethylpyrrole is η^{2}-coordinated at C 2 and C 3 , with the $\mathrm{Os}-\mathrm{C}$ distances approximately equal. Analogous to structures of other η^{2}-aromatic species, ${ }^{3,8}$ the metal forms a plane with C2 and C3 which lies roughly perpendicular to that of the ligand (dihedral angle $=112.9^{\circ}$). The methyl carbon attached at C2 is displaced by $0.87 \AA$ from the ring plane, approximating sp^{3} geometry. The C3-C4 bond length has increased $0.05 \AA$, and the C4-C5 bond shortened $0.06 \AA$, compared to free pyrrole, ${ }^{9}$ an observation that

[^0]

FIgure 1. ORTEP drawing of $\left[\left(\left(2,3-\eta^{2}\right)-2,5 \text {-dimethylpyrrole }\right) \mathrm{Os}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$ (1) and reaction of 1 to 2 . Selected bond distances (\AA) and angles (deg) are as follows: $\mathrm{Os}-\mathrm{C} 2=2.218$ (8); $\mathrm{Os}-\mathrm{C} 3=2.219$ (7); $\mathrm{N} 1-\mathrm{C} 2=1.41$ (1); $\mathrm{C} 2-\mathrm{C} 3=1.41$ (1); $\mathrm{C} 3-\mathrm{C} 4=1.47$ (1); $\mathrm{C} 4-\mathrm{C} 5=1.32$ (1); $\mathrm{C} 5-\mathrm{N} 1$ $=1.388$ (9); $\mathrm{C} 2-\mathrm{C} 6=1.51$ (1); $\mathrm{Os}-\mathrm{N} 2=2.13$ (1); $\mathrm{Os}-\mathrm{N} 3=2.15$ (1); $\mathrm{Os}-\mathrm{N} 6=2.171$ (8); $\mathrm{C} 2-\mathrm{Os}-\mathrm{C} 3=37.1$ (3); $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3=106.4$ (7); $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4=105.8$ (7); $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5=109.1$ (6); $\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1=109.5$ (5); $\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2=109.3$ (6); $\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 6=113.0$ (7); $\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 7=$ 120.4 (7); C3-C2-C6 = 126.3 (9); C4-C5-C7 = 130.1 (7); $\mathrm{N} 2-\mathrm{Os}-\mathrm{N} 6$ $=86.1$ (3); $\mathrm{N} 2-\mathrm{Os}-\mathrm{N} 3=176.7$ (5); $\mathrm{N} 2-\mathrm{Os}-\mathrm{N} 4=89.9$ (3).
indicates a significant localization of pyrrole π-electron density.
Reactivity. The uncoordinated portion of the $2,3-\eta^{2}$ tautomer of 1 may be viewed as an enamine. In marked contrast to the behavior observed for free pyrrole, which protonates at the α position preferentially and under forcing conditions ($\mathrm{p} K_{\mathrm{a}}=-1$), ${ }^{10}$ the treatment of 1 with anilinium ion ($\mathrm{p} K_{\mathrm{a}}=+4.6$) in methanol (10 min , ether precipitation) yields a β-protonated (i.e., C4) species, exclusively (2). ${ }^{11}{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and DEPT NMR data indicate inequivalent methyls along with a methine and a methylene group. The same product is obtained by treatment of 1 with 1 equiv of triflic acid in methanol (10 min , ether precipitation). Protonation of the parent pyrrole complex with triflic acid in methanol also produces a β-protonated product. Treatment of 2 with a slight excess of diisopropylethylamine completely restores 1 . Preliminary data indicate that carbon electrophiles such as methylacetonitrilium triflate also react preferentially at C 4 with no indication of a competitive process at an α-position. ${ }^{12}$

With dipolarophiles such as maleic anhydride, $\mathbf{1}$ does not show enamine reactivity, but acts as an azomethine ylide yielding
(9) Chadwick, D. J. In Pyrroles: Part One; Jones, R. A., Ed.; Wiley: New York, 1990; p 23. See also: Baird, M. D.; Ammon, H. L. J. Org. Chem. 1979, 44, 444.
(10) Jackson, A. H. In Pyrroles: Part One; Jones, R. A., Ed.; Wiley: New York, 1990; pp 307-312.
(11) Characterization of $\mathbf{2}$: (a) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(20^{\circ} \mathrm{C}\right.$, acetone- $\left.d_{6}\right) 5.07\left(t-\mathrm{NH}_{3}\right.$, $\mathrm{br}, 3 \mathrm{H}), 4.66(\mathrm{C}(3) \mathrm{H}, \mathrm{d}(5.7 \mathrm{~Hz}), 1 \mathrm{H}), 3.83\left(c-\mathrm{NH}_{3}, \mathrm{br}, 12 \mathrm{H}\right), 3.28(\mathrm{C}(4) \mathrm{H}$, d (24.6 Hz), 1 H$), 3.05(\mathrm{C}(4) \mathrm{H}$, dd $(5.7,24.6 \mathrm{~Hz}), 1 \mathrm{H}), 2.55\left(\mathrm{C}(5) \mathrm{CH}_{3}, \mathrm{~s}\right.$, $3 \mathrm{H}), 1.85\left(\mathrm{C}(2) \mathrm{CH}_{3}, \mathrm{~s}, 3 \mathrm{H}\right)$; (b) ${ }^{13} \mathrm{C}$ NMR ($20^{\circ} \mathrm{C}$, acetone-d ${ }^{6}$) 187.1 (C(5)), 74.3 (C(2)), $46.2(\mathrm{C}(4)), 42.1(\mathrm{C}(3)), 17.8\left(\mathrm{CH}_{3}\right), 16.1\left(\mathrm{CH}_{3}\right)$; (c) cyclic voltammetry ($\nu=200 \mathrm{mV} / \mathrm{s} ; \mathrm{CH}_{3} \mathrm{CN} / \mathrm{TBAH}$) $E_{\text {pa }}=+1.09,+1.35$ $\mathrm{V} ; E_{\mathrm{p}, \mathrm{c}}=-1.03 \mathrm{~V}$; NHE. (d) Anal. $\left(\mathrm{C}_{9} \mathrm{H}_{29} \mathrm{~N}_{6} \mathrm{OsO}_{9} \mathrm{~S}_{3} \mathrm{~F}_{9}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
(12) Hodges, L. M.; Myers, W. H.; Harman, W. D., separate communication.

2,5-cycloaddition products, as earlier reported for $\left[\mathrm{Os}\left(\mathrm{NH}_{3}\right)_{5}\right.$ (η^{2}-pyrrole) $]^{2+}$. ${ }^{\text {lc }}$ A full report of electrophilic substitution and dipolar cycloaddition reactivity for η^{2}-pyrrole and substituted pyrrole complexes is forthcoming.

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society (PRF 23361-G), to the University of Virginia, and to the University of Richmond (W.H.M.) for support of this research.

Supplementary Material Available: Tables of experimental details, atomic positional parameters, thermal parameters, and bond distances and angles and an ORTEP drawing of the asymmetric part of the unit cell for 1a (15 pages); table of observed and calculated structure factors for 19 (75 pages). Ordering information is given on any current masthead page.

Synthesis and Structural-Bonding Analysis of the [$\left.\mathrm{Au}_{6} \mathrm{Ni}_{12}(\mathrm{CO})_{24}\right]^{2-}$ Dianion Containing an Unprecedented 18-Vertex Cubic T_{d} Metal Core Composed of Five Face-Fused Octahedra: The First Example of a Discrete Gold/Nickel Bimetallic-Bonded Species

Alison J. Whoolery and Lawrence F. Dahl*

Department of Chemistry
University of Wisconsin-Madison Madison, Wisconsin 53706

Received May 9, 1991
Continuing efforts in our laboratory ${ }^{1}$ have been directed toward the syntheses of new high-nuclearity nickel carbonyl clusters through reactions of various transition-metal and main-group compounds with the $\left[\mathrm{Ni}_{6}(\mathrm{CO})_{12}\right]^{2-}$ dianion. ${ }^{2}$ Here we report the synthesis and structural determination of the novel $\left[\mathrm{Au}_{6} \mathrm{Ni}_{12^{-}}\right.$ $(\mathrm{CO})_{24}{ }^{2-}$ dianion (1). This cluster, which represents the first example of a molecular gold/nickel bimetallic-bonded species, possesses a heretofore unknown 18-vertex T_{d} polyhedron composed of five face-fused metal octahedra.
The $\mathrm{Au}_{6} \mathrm{Ni}_{12}$ cluster (1) was obtained from a $2: 3$ molar reaction of $\left[\mathrm{PPh}_{3} \mathrm{Me}\right]^{+}{ }_{2}\left[\mathrm{Ni}_{6}(\mathrm{CO})_{12}\right]^{2-}(0.50 \mathrm{~g}, 0.40 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{PAuCl}$ $(0.30 \mathrm{~g}, 0.60 \mathrm{mmol})$ in THF at ambient temperature for 18 h under a N_{2} atmosphere. After removal of a brown precipitate by filtration, the THF solution was reduced under vacuum to a volume of 15 mL and chromatographed on a SiO_{2} gel column. 1 was isolated in ca. 5% yield as the third band eluted from the column. This red, air-unstable cluster, which was crystallized as the $\left[\mathrm{PPh}_{3} \mathrm{Me}\right]^{+}$salt by slow diffusion of diisopropyl ether into a concentrated THF solution, was characterized by infrared and electrochemical measurements and by a single-crystal X-ray diffraction analysis. ${ }^{3}$

The idealized T_{d} configuration of the $\left[\mathrm{Au}_{6} \mathrm{Ni}_{12}(\mathrm{CO})_{24}\right]^{2-}$ dianion (1) can be formally considered to arise from the condensation of four $\mathrm{Ni}_{3}(\mathrm{CO})_{3}\left(\mu_{2}-\mathrm{CO}\right)_{3}$ fragments in antiprismatic orientations on four alternate faces of a central Au_{6} octahedron. Alternatively, the $\mathrm{Au}_{6} \mathrm{Ni}_{12}$ core can be described as a composite of four ver-tex-sharing $\mathrm{Au}_{3} \mathrm{Ni}_{3}$ octahedra (Figure 1). Each equilateral nickel

[^1]

Figure 1. $\mathrm{Au}_{6} \mathrm{Ni}_{12}$ core of the 236 -electron $\left[\mathrm{Au}_{6} \mathrm{Ni}_{12}(\mathrm{CO})_{24}\right]^{2-}$ dianion (1). This 18 -vertex polyhedron of cubic $T_{d} \overline{4} 3 m$ symmetry may be viewed as a face-to-face condensation of four octahedral $\mathrm{Au}_{3} \mathrm{Ni}_{3}$ fragments at alternate faces of a central Au_{6} octahedron.
triangle retains the architecture of the three terminal carbonyl and three doubly bridging carbonyl ligands found in the two $\mathrm{Ni}_{3}(\mathrm{CO})_{3}\left(\mu_{2}-\mathrm{CO}\right)_{3}$ moieties comprising the trigonal-antiprismatic $\left[\mathrm{Ni}_{6}(\mathrm{CO})_{12}\right]^{2-}$ precursor. Electron counting in this face-fused polyoctahedral cluster, which may be considered to possess globally delocalized metal-metal bonding, gives a total of 236 electrons, which agrees with the predicted cluster valence electron count for four octahedra sharing six vertices (i.e., $4 \times 86-6 \times 18=236$ electrons). ${ }^{4.5}$ The 12 independent, $\mathrm{Au}-\mathrm{Au}$ distances in the central Au_{6} octahedron vary from 2.786 (2) to 2.882 (2) \AA; the mean value of $2.835 \AA$ is shorter than the corresponding mean $\mathrm{Au}-\mathrm{Au}$ distance of $2.98 \AA$ on the "surfaces" of the $\mathrm{Au}_{11} \mathrm{X}_{3}\left(\mathrm{PAr}_{3}\right)_{7}$ clusters (where $\mathrm{X}=\mathrm{I}, \mathrm{SCN}$) ${ }^{6}$ but comparable to the mean $\mathrm{Au}-\mathrm{Au}$ distance of $2.81 \AA$ on the "surface" of the $\left[\mathrm{Au}_{9}\left(\mathrm{P}\{p \text {-toll }]_{3}\right)_{8}\right]^{3+}$ cluster. ${ }^{7}$ To our knowledge, there are no previous examples of a noncentered Au_{6} octahedron. The yellow $\left[\mathrm{Au}_{6}\left(\mathrm{P}\{p \text {-tol }\}_{3}\right)_{6}\right]^{2+}$ dication (where p-tol denotes 4 -methylphenyl), originally formulated ${ }^{8}$ as a noncentered octahedral cluster, was recently shown by Schmidbaur and co-workers ${ }^{9}$ to be the $\left[\mathrm{Au}_{6}\left(\mathrm{P}\{p \text {-tol })_{3}\right)_{6}\left(\mu_{6}-\mathrm{C}\right)\right]^{2+}$ dication with octahedral coordination of the AuPPh_{3} fragments around an interstitial carbon atom; thus, the carbide-centered atom in this cluster results in a normal electron count ${ }^{10}$ and accounts for the unusually long $\mathrm{Au}-\mathrm{Au}$ distances of $3.02 \AA$ (average). ${ }^{11-17}$ In

[^2]
[^0]: ${ }^{\dagger}$ On sabbatical leave during 1990-1991 from the University of Richmond, Richmond, VA 23173.
 (1) (a) Harman, W. D.; Sekine, M.; Taube, H. J. Am. Chem. Soc. 1988, 110, 5725. (b) Cordone, R.; Taube, H. J. Am. Chem. Soc. 1987, 109, 8101. (c) Cordone, R.; Harman, W. D.; Taube, H. J. Am. Chem. Soc. 1989, 111, 5969.
 (2) Sweet, J. R.; Graham, W. A. G. J. Am. Chem. Soc. 1983, 105, 305. v.d. Heijden, H.; Orpen, A. G.; Pasman, P. J. Chem. Soc., Chem. Commun. 1985, 1576. Jones, W. D.; Feher, F. J. Am. Chem. Soc. 1984, 106, 1650. Jones, W. D.; Dong, L. J. Am. Chem. Soc. 1989, 111, 8722. Belt, S. T.; Dong, L.; Duckett, S. B.; Jones, W. D.; Partridge, M. G.; Perutz, R. N. J. Chem. Soc., Chem. Commun. 1991, 266.
 (3) Neithamer, D. R.; Parkanyi, L.; Mitchell, J. F.; Wolczanski, P. T. J. Am. Chem. Soc. 1988, 110, 4421.
 (4) Choi, M. G.; Angelici, R. J. J. Am. Chem. Soc. 1990, 112, 7811.
 (5) A solution of 2,5 -dimethylpyrrole $(2.90 \mathrm{~g}, 30 \mathrm{mmol}), \mathrm{Os}\left(\mathrm{NH}_{3}\right)_{5}(\mathrm{OTf})_{3}$ $(0.90 \mathrm{~g}, 1.25 \mathrm{mmol}) 1,2$-dimethoxyethane (7.0 g), and N, N-dimethylacetamide $(3.0 \mathrm{~g})$ was treated with activated Mg^{0} powder $(2.9 \mathrm{~g})$. After 100 min , addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ to the filtered reaction mixture resulted in a light yellow precipitate ($1,0.60 \mathrm{~g}, 0.90 \mathrm{mmol}, 72 \%$ yield). A sample of $1(0.35$ g) was purified by ion-exchange chromatography and precipitated as a tetraphenylborate salt ($1 \mathrm{a}, 0.47 \mathrm{~g}, 92 \%$). Anal. ($\mathrm{C}_{54} \mathrm{H}_{64} \mathrm{~B}_{2} \mathrm{~N}_{6} \mathrm{Os}$) C, $\mathrm{H}, \mathrm{N} ; \mathrm{C}$: calcd, 64.38 ; found, 63.91 .
 (6) Characterization of 1: (a) ${ }^{1} \mathrm{H}$ NMR ($20^{\circ} \mathrm{C}$, acetone- d_{6}) 6.98 (NH, br, 1 H$), 5.17(\mathrm{CH}, \mathrm{br}, 2 \mathrm{H}), 4.41\left(t-\mathrm{NH}_{3}, \mathrm{br}, 3 \mathrm{H}\right), 3.30\left(c-\mathrm{NH}_{3}\right.$, br, 12 H$)$ $1.80\left(\mathrm{CH}_{3}, \mathrm{br}, 6 \mathrm{H}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(-50^{\circ} \mathrm{C}\right.$, acetone- $\left.d_{6}\right) 7.05(\mathrm{NH}, \mathrm{s}, 1 \mathrm{H}), 5.32$ $(\mathrm{C}(4) \mathrm{H}, \mathrm{s}, 1 \mathrm{H}), 4.88(\mathrm{C}(3) \mathrm{H}, \mathrm{s}, 1 \mathrm{H}), 4.54\left(\mathrm{t}-\mathrm{NH}_{3}, \mathrm{br}, 3 \mathrm{H}\right), 3.40\left(\mathrm{c}-\mathrm{NH}_{3}\right.$, $\mathrm{br}, 12 \mathrm{H}), 1.98\left(\mathrm{CH}_{3}, \mathrm{~s}, 3 \mathrm{H}\right), 1.53\left(\mathrm{CH}_{3}, \mathrm{~s}, 3 \mathrm{H}\right) ;(\mathrm{b}){ }^{13} \mathrm{C}$ NMR (proton decoupled, $20^{\circ} \mathrm{C}$, acetone- d_{6}) $102(\mathrm{C}(2,5), \mathrm{br}), 60\left(\mathrm{C}(3,4)\right.$, br), $15\left(\mathrm{CH}_{3}\right.$, br); (c) cyclic voltammetry ($\nu=200 \mathrm{mV} / \mathrm{s}$; $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{TBAH}$) $E_{1 / 2}=+0.05 \mathrm{~V}$; NHE. (d) Anal. ($\mathrm{C}_{9} \mathrm{H}_{25} \mathrm{~N}_{6} \mathrm{OsO}_{9} \mathrm{~S}_{3} \mathrm{~F}_{9}$) C, H, N.
 (7) Crystallographic data: $\mathrm{C}_{54} \mathrm{H}_{64} \mathrm{~B}_{2} \mathrm{~N}_{6} \mathrm{Os} \cdot 3 \mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{3} ; M=$ 1279.32; triclinic, space group $P 1$ (No. 1); $a=11.966$ (4) $A, b=13.677$ (3) $\AA, c=11.132$ (3) $A ; \alpha=98.08(2)^{\circ}, \beta=104.94(4)^{\circ}, \gamma=110.46(2)^{\circ}, V$ $=1595(2) \AA^{3} ; Z=1, d_{\text {caled }}=1.33 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure was solved by direct methods using TEXSAN 5.0. Full-matrix least-squares refinement yielded $R(F)=0.032$ and $R_{w}(F)=0.048$ for 11120 absorption-corrected reflections with $I>3 \sigma(I)$ measured within the full sphere up to $2 \theta=50^{\circ}$ on a Rigaku AFC6S diffractometer (Mo K α radiation, $\lambda=0.71069 \AA ; T=-120^{\circ} \mathrm{C}$). The refinement of the enantiomer with the inverted coordinates gave $R(F)$ $=0.047$ and $R_{\mathrm{w}}(F)=0.067$.
 (8) Harman, W. D.; Gebhard, M.; Taube, H. Inorg. Chem. 1990, 29, 567.

[^1]: (1) DesEnfants, R. E., Il; Gavney, J. A.; Hayashi, R. K.; Rae, A. D.; Dahl, L. F. J. Organomet. Chem. 1990, 383, 543-572 and references cited therein.
 (2) (a) Calabrese, J. C.; Dahl, L. F.; Cavalieri, A.; Chini, P.; Longoni, G.; Martinengo, S. J. Am. Chem. Soc. 1974, 96, 2616-2618. (b) Longoni, G.; Chini, P.; Cavalieri, A. Inorg. Chem. 1976, 15, 3025-3029.
 (3) $\left[\mathrm{PPh}_{3} \mathrm{Me}\right]_{2}^{+}\left[\mathrm{Au}_{6} \mathrm{Ni}_{12}(\mathrm{CO})_{24}\right]^{2-} \cdot \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$: orthorhombic, Pbca, $a=$ $17.730(5) \AA, b=29.518$ (6) $\AA, c=30.676$ (14) $\AA, V=16054$ (9) \AA^{3}, \bar{Z} $=8$. The crystal structure (with the independent unit consisting of one dianion, two monocations, and one THF molecule) was determined by direct methods (SHELXTL) followed by successive Fourier and difference syntheses. A nisotropic least-squares refinement converged at $R_{1}(F)=8.38 \%, R_{2}(F)=$ 7.74% for 7657 independent absorption-corrected reflections $(|F|>3.0 \sigma(F))$ obtained at room temperature via a Siemens (Nicolet) P3/F diffractometer with Mo $\mathrm{K} \alpha$ radiation.

[^2]: (4) Application of the topological electron-counting (TEC) model ${ }^{5}$ to 1 also gives a total valence cluster electron count (N) of 236, as calculated from the equation $N=2(8 V-F+2+X)$ where $V=18$ vertices, $F=32$ exposed triangular (metal-metal bonding) faces, and $X=4$ (based upon four ver-tex-sharing octahedra). The fact that this and other electron-counting procedures do not predict the correct electron total for five face-fused metal octahedra emphasizes from a bonding viewpoint that 1 is best considered as the composite of four vertex-sharing $\mathrm{Au}_{3} \mathrm{Ni}_{3}$ octahedra.
 (5) (a) Teo, B. K. Inorg. Chem. 1984, 23, 1251-1257. (b) Teo, B. K.; Longoni, G.; Chung, F. R. K. Inorg. Chem. 1984, 23, 1257-1266. (c) Teo, B. K. Inorg. Chem. 1985, 24, 1627-1638. (d) Teo, B. K. Inorg. Chem. 1985, 24, 4209-4213.
 (6) Albano, V. G.; Bellon, P. L.; Manassero, M.; Sansoni, M. J. Chem. Soc., Chem. Commun. 1970, 1210-1211.
 (7) Bellon, P. L.; Cariati, F.; Manassero, M.; Naldini, L.; Sansoni, M. J. Chem. Soc., Chem. Commun. 1971, 1423-1424.
 (8) (a) Bellon, P. L.; Manassero, M.; Naldini, L.; Sansoni, M. J. Chem. Soc., Chem. Commun. 1972, 1035-1036. (b) Bellon, P.; Manassero, M.; Sansoni, M. J. Chem. Soc., Dalton Trans. 1973, 2423-2427.
 (9) Scherbaum, F.; Grohmann, A.; Huber, B.; Krüger, C.; Schmidbaur, H. Angew. Chem., Int. Ed. Engl. 1988, 27, 1544-1546.
 (10) (a) Mingos, D. M. P. J. Chem. Soc., Dalton Trans. 1976, 1163-1169. (b) Mingos, D. M. P. Nature 1990, 345, 113-114.
 (11) Red $\left[\mathrm{Au}_{6}\left(\mathrm{PR}_{3}\right)_{6}\right]^{2+}$ dications $(\mathrm{R}=\mathrm{Ph}, p$-tol) were subsequently synthesized and spectroscopically characterized by Mingos et al. ${ }^{12}$ an X-ray crystallographic analysis of the triphenylphosphine-ligated dication (as the dichloromethane-solvated nitrate salt) established that the six gold atoms adopt an edge-shared bitetrahedral geometry, which was predicted on the basis of previous MO calculations. ${ }^{13}$
 (12) (a) Briant, C. E.; Hall, K. P.; Mingos, D. M. P. J. Organomet. Chem 1983, 254, C18-C20. (b) Briant, C. E.; Hall, K. P.; Mingos, D. M. P.; Wheeler, A. C. J. Chem. Soc., Dalton Trans. 1986, 687-692.
 (13) Evans, D. G.; Mingos, D. M. P. J. Organomet. Chem. 1982, 232, 171-191.

